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THERMAL GRAVITATIONAL CONVECTION IN A VARIABLE VECTOR FIELD 

OF SMALL ACCELERATIONS 

V. S. Avduevskii, A. V. Korol'kov, V. S. Kuptsova, 
and V. V. Savichev 

UDC 536.25 

The use of nearly weightless states in the manufacture of materials can allow for im- 
provement of structure and for uniformity of mixture distribution in samples [1-3]. In the 
absence of gravity, small accelerations due to various perturbations play a primary role 
in the evolution of gravitational convection. Small accelerations are related to the rigid- 
ity characteristics of structures and are periodic in nature, where the vector for small 
accelerations g continuously changes in quantity and direction over time. In many cases, 
this change can to some degree of accuracy be considered as the rotation of a vector with 
a constant modulus and angular velocity in some fixed plane 

lgl = const, Og = mr, (1 )  

where ~ is the angular velocity of rotation; Og is the angle between the current and initial 
directions of the vector g; and the symbol - will be used to denote dimensional quantities. 

In order to see what effect (and if there is an effect, in what manner) a change in 
the vector of a small local acceleration has on the evolution of convective transfer pro- 
cesses, we studied the model problem of thermal gravitational convection in a cylindrical 
volume with rotation g in a plane perpendicular to the axis of the cylinder. 

The mathematical model for the calculation scheme is given in Fig. i, where one must 
consider the transfer equations for momentum and energy in the variables T, ~, w (the tempera- 
ture, the flow function, and the vortex intensity function) and the equation for the rela- 
tion between ~ and w. Using the polar coordinate system in dimensionless form with the Bous- 
sinesq approximation, these equations have the form: form the momentum transfer equation, 

Ow aw v Ot~ OT cos(O--Og + r + ; 
OFo + u ~ + ' 7 " ~ ' = P r 2 G r  s i n ( O - - O g ) +  aO' r r ~" [ ~ k  Or~ aO 2] 

for the energy transfer equation, 

aT OT v OT t 0 [ OT'~ t 02T 
OFo + u-'~-r + T-~6-=-i:-g-;  l~r-~-r J + r2 002' 

i o~ oq, 
u = T - ~ - - ,  v - -  - - - ~ 7 / ~  

and for the equation for the relation between ~ and w, 

t 0 r-~r + =tv~,  
r a, 7 - ~  

w h i l e  t h e  change  in  g o v e r  t i m e  i s  g i v e n  by r e l a t i o n  ( l ) .  C o n v e n t i o n a l  d e f i n i t i o n s  a r e  u s e d  
h e r e ,  and t h e  t r a n s f o r m a t i o n  t o  d i m e n s i o n l e s s  q u a n t i t i e s  i s  done w i t h  t h e  r e l a t i o n s  
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When the specific thermal gravitational convection criteria of Grashof Gr and Prandtl 
Pr are supplemented by the factor ~, which is the angular velocity of rotation for g, it 
is advantageous for a mathematical formulation to use a system of transfer equations that 
directly include this factor. For this, we will use the variables r, Ot, and Fo, where 0t = 
e - eg = 8 - 0Fo is a new tangential coordinate. Substituting the equation for w, 

O,o (0, Fo) Ow (Or, Fo) Ow (Or, Fo) 00. t " Ow (Or, Fo) Ow (Or, Fo) 
= + CO 

0 Fo 8Fo O0 t #Fo 0 Fo O0.t 

i n t o  t h e  e n e r g y  t r a n s f e r  e q u a t i o n ,  we h a v e  

Ow Ow" v ow =Pr~Gr{Or or c o s O t - ~ o ~ v  1 P.__L~r O_(rOW) o~w 1 
0 FO + U.~7-r -{- r O0 t ~ sin 0 t + OOt - - - F - -  + OOtJ + r ~ [ Or \ ~ 27 "~tJ" (2) 

Here ~ = ~/IgI~&TR is a number characterizing the relation between the inertial forces 
arising with the rotation of g and the buoyant forces. In a similar way, substituting the 
expression for T, 

or(O, Fo) OT(Ot, Fo) Or (Ot,So) O0_t or (o  t, Fo) Or(O t, Fo) 
8Fo = 0Fo + 00 t 0Fo = fifo ~ 00. t 

into the energy transfer equation, we have 
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+ oo " (3) 
It is also possible to obtain the criteria ~ for rotational convection for similar 

transformations of the equations in a fixed coordinate system connected to g. Although 
this is possible, it is complicated for analysis since extremely cumbersome arguments are 
obtained for the sine and cosine functions. A more logical approach is to make the transition 
to the above coordinate system, since one can then explicitly separate terms in the transfer 
equations related to the mechanism behind rotational convection. 

The equation for the relation between ~ and w is unchanged since it is nonevolutional 
and is independent of the time Fo. 

The boundary conditions have the form 

for Fo= 0 T = 0, ~ = 0, w = 0, 

for r=i T=I, ~=], m= ' 
Or 2 " 

The problem is solved by the finite difference method using a modified explicit scheme 
with an automatic change in the difference operator [5] for the momentum and energy transfer 
equations and applying a passing method for the relation between ~ and w. 

Analyzing system (2), (3) according to the criteria fl, the following features in the 
evolution of thermal gravitational convection due to an angular velocity of rotation for 
g are supported by extensive experiments. 

In the absence of rotation of g, fi = 0, and the terms that include fi in the right-hand 
side of the momentum and energy transfer equations are equal to zero [~(aw/set) = 0, ~Gr Pr 2. 
ST/aS t = 0]. For a large rotational velocity for g, the quantity ~ goes to infinity, and 
the terms aw/aet and 8T/88t go to zero to preserve the order of the quantities in the momen- 
tum and energy transfer equations. A maximum intensity of convective flow is observed for 
certain values of ~ that is characterized by max~max and can greatly exceed the intensity of 
convective flow for a fixed vector g. The above conclusions support the experimental results 
given in Figs. 2-4. If ~ = 7.314"10 -4 (Gr = 106 , Pr = 2.93), the isotherms take the form 
of concentric circles, which indicates that the derivative of the temperature in the tangen- 
tial direction is equal to zero (Fig. 2). 

Processing and analysis of the experimental results was done for different values of 
Pr, Gr, and ~, which allows one to generalize the data and to construct a simple dependence 
for the relative maximum flow function ~n = ~max/~max,e=0 on the complex parameter ~PrGr l/2 
(Fig. 3). This dependence indicates that the maximum intensity of convective flow exists 

1/2 < in the range 0 < fiPrGr 2, while for ~PrGr 1/2 = 2, the ratio ~max/~max,~=0 = i, i.e., 
the intensity of convective flow is the same as that for a fixed vector g. For a further 
increase in the rotational velocity of g, when the indicated grouping of terms is greater 
than two, the intensity of convective flow is suppressed, and the ratio Smax/~max,w=0 de- 
creases and goes to zero in the limit. 

Since for different systems (with differing physical properties, dimensions, geometries, 
and heat exchange conditions) the reaction to a given rotational velocity of g will vary, 
representing the results as a function of ~ is less convenient, since calculations must be 
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done for each new system. The obtained data and the representation of functions in terms 
of ~PrGr I/2 are general in nature, since a change in the intensity of convective flow is 
not simply due to an increase or decrease in the rotational velocity of g, but is a conse- 
quence of the complex interaction between a series of processes determined by the parameters 
of the system and entering into the criteria Gr, Pr, and S. The dependence for ~max/~max,~=0, 
which is given in Fig. 3, allows one for different values of Gr, Pr, and ~ to determine what 
effect the rotation of g has on the intensity of convective flow in every real case. 

One should note that for different values of ~, not only does the intensity of convec- 
tive flow change, but so does the qualitative pattern of the flow function and temperature 
fields (see Fig. 2). In the presence of rotation of g, the symmetry of the fields for T 
and ~ is violated. If 0 < ~PrGr I/2, the intensity of the positive vortex is greater than 
the case when the vector g is fixed, but the intensity of the negative vortex is less. The 
positive vortex dominates the flow function field and practically expels the negative vortex. 

The observed phenomena of an increase in the intensity and suppression of convective 
flow for rotation of the acceleration vector are extremely important when analyzing model 
and numerical experiments since they allow for an approach to explaining the behavior of 
liquids and melted material in small acceleration fields that is based on completely new 
positions. 

Experiments were also conducted for other types of changes in the acceleration vector 

g z  = ~ c o s ~ F o ,  g v  = ~ s i n  oFo. 

In these cases, the dependences of ~max on the dimensionless time were obtained (Fig. 5). 
With a decrease in the amplitude of the projection of the vector onto the axis Oy, the flow 
intensity drops but remains higher than would be the case in the field of a constant vector 
g. The temperature and flow function field given in Fig. 6 indicate that there are quanti- 
tative and qualitative differences in the flow for various types of space-time changes in 
g that require additional serious investigations. 
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MODELING LARGE-SCALE MIXING PROCESSES IN AN EXPANDING SUPERSONIC JET 

N. A. Zheltukhin and N. M. Terekhova UDC 532.526 

The existence of large-scale instability waves realizing large-scale mixing processes 
in supersonic turbulent jets is an important factor affecting both the flow structure and 
the noisemaking process therein. It is detected that such fluctuations in subsonic jets 
can result in the formation of coherent structures of the type of toruses, simple and double 
spirals, which under their further evolution will result in the generation of broadband 
noise and noise associated with the nonlinear development of instability waves [i]. 

Because of the technical complexity of their formulation, there are extremely few such 
experiments for high-velocity jets; consequently, many aspects of flow and instability wave 
interaction still have not been elucidated finally [2, 3]. In this situation it is impossible 
to underestimate the efficiency of mathematical modeling methods, which can contribute to 
the comprehension of definite stages in such an interaction. There have not been such re- 
searches for supersonic jets. 

Speaking of the kind of large-scale waves that are evolutionary in a supersonic flow, 
it is necessary to note that the most important are the perturbations called the jet column 
mode which damp out both the mixing layer and the potential kernel during their development. 
As compared with the shear-layer mode originating at the root of the jet, they carry more 
energy, have a broad frequency spectrum, and are more characteristic for jets. The frequency 
and structural forms of such waves have been studied well enough [4-6]. 

Investigated in this paper are interaction processes of finite intensity perturbations 
of the jet-column-mode type with a design supersonic turbulent axisymmetric cold jet at 
its initial section. It is assumed that the fine-scale turbulence is in the energetic equi- 
librium state with the mean flow and exerts no influence on its development. There is exam- 
ined what changes can occur in the stream under the action of unit waves of different spec- 
tral form (axisymmetric n = 0, and azimuthal or spinal n = 1 and 2) and more complex fluctua- 
tions of flapping type (the superposition of synchronized right- and left-twisted spirals 
n = • and • 

The mean velocity vector u = IU0, 0, W01 of such a flow has both a radial U 0 and a 
longitudinal W 0 component. Here and henceforth, dimensionless quantities are used, the 
nondimensionalization is performed by dividing by r (the initial radius), and W, p (the 
longitudinal velocity and density in the flow core). In the jet core (r < r i = 1 - 6/2)u = 
I0, 0, ii, in the external field (r > r 2 = 1 + ~/2)u = I0, 0, 01, and in the mixing layer 
of thickness 6(r I ~ r ~ r 2) the longitudinal component is approximated by the Schlichting 
relationship [7] 

W o  = I - -  ( t  - -  n! ,~)  ~, ~ - -  (1 - -  r + 8 / 2 ) I ~  o ~ <  ~ <  I .  
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